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Recovering a system’s underlying structure from its histori-
cal records (also called structure mining) is essential to mak-
ing valid inferences about that system’s behavior. For exam-
ple, making reliable predictions about system failures based
on maintenance work-order data requires determining how
concepts described within the work order are related. Ob-
taining such structural information is challenging, requiring
system understanding, synthesis, and representation design.
This is often either too difficult or too time-consuming to pro-
duce. Consequently, a common approach to quickly eliciting
tacit structural knowledge from experts is to gather uncon-
trolled keywords as record labels—i.e., “tags.” One can then
map those tags to concepts within the structure and quanti-
tatively infer relationships between them. Existing models of
tag similarity tend to either depend on correlation strength
(e.g. overall co-occurrence frequencies), or on conditional
strength (e.g. tag sequence probabilities). A key difficulty
in applying either model is understanding under what con-
ditions one is better than the other for overall structure re-
covery. In this paper, we investigate the core assumptions
and implications of these two classes of similarity measures
on structure recovery tasks. Then, using lessons from this
characterization, we borrow from recent psychology litera-
ture on semantic fluency tasks to construct a tag similarity
measure that emulates how humans recall tags from memory.
We show through empirical testing that this method com-
bines strengths of both common modeling paradigms. We
also demonstrate its potential as a pre-processor for struc-
ture mining tasks via a case study in semi-supervised learn-
ing on real excavator maintenance work-orders.

∗Address all correspondence to this author.

Nomenclature
ML Machine Learning
NLP Natural Language Processing
MWO Maintenance Work Order
DSM Design Structure Matrix
RW Random Walk
INVITE Initial-visit Emitting (Random Walk)
SGD Stochastic Gradient Descent

1 INTRODUCTION
Many engineering and design tasks rely on having an

accurate representation of a system’s structure. This struc-
tured knowledge, made up of concepts and concept-relations,
can then be used to create more reliable models for engi-
neering learning tasks. For example, such structures include
ontologies for industrial data and reliability analysis [1–3],
Design Structure Matrices (DSMs) for quantitative design of
complex systems [4–6], or rule-sets for normalizing reliabil-
ity data for e.g. survival analysis [7–9]. Though some ef-
fort has been spent automating the process of building these
“knowledge structures” [10], even these cases require signif-
icant manual effort to collate validated vocabularies and syn-
tactical rules; in general, obtaining such structured knowl-
edge can be challenging since closed form descriptions and
characterizations of structure are often either too difficult or
too time-consuming to produce. Manual construction of be-
spoke, application-specific engineering ontologies are often
cost-prohibitive to create and maintain, and the use of gen-
eral purpose concept networks [11–13] often lack needed do-
main knowledge.
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In light of these difficulties, many researchers have real-
ized a need to rapidly acquire this structured knowledge from
their staff’s expertise, whether through elicitation [14], or by
learning from their data (i.e., historical records). The latter
is often easier or more reliable to collect from experts when
time-constraints and demanding responsibilities play a sig-
nificant role in data creation. This process of learning struc-
tured data from written historical records is often referred to
as structure mining, or in the machine learning community, a
special case of representation learning on discrete data (e.g.
graphs) [15, 16].

In technical fields like engineering, design, and manu-
facturing, performing structure learning faces two key dif-
ficulties that this paper helps address. First, performance of
existing structure learning approaches hinges on an appropri-
ate definition of similarity among concepts. As we describe
in Section 2, common choices for this similarity fall into
two camps—correlation versus conditional strength. This
paper compares the merits of both approaches and demon-
strates conditions under which both struggle to accurately
infer ground-truth structure (§4). Second, available historical
data is often difficult to use directly; the domain experts cre-
ating it generally assume it will be read and adapted by col-
leagues or other experts in their own field. This means an an-
alyst cannot simply use, e.g., written lab notebooks, technical
reports, or maintenance work-orders (MWOs) as is, taking
them at face value; words and concepts with more general
meaning to the layman will have domain-specific meaning.

This paper addresses this problem by adapting models
of memory recall in psychology to posit a statistical model
that accounts for how experts may generate tags given prior
experience or context (§3). This model also forms a middle-
ground between existing similarity measurement tools, and
sheds light on the differences among those models.

The next sections describe our perspective on the use
of structure learning while dealing with tags and historical
records —i.e., using Maintenance Work Orders to infer sys-
tem structure. We use this concrete example to highlight why
structure learning is difficult, what practical issues one faces
when evaluating such techniques, and then summarize the
paper’s key research questions.

1.1 Example of Maintenance Work Orders and Tags

In contexts where annotation is costly, significant re-
search has been done to empower casual annotators, and
understand how natural classification and labeling schemes
arise in social communities. When restricted vocabularies
and categories for record annotation are not available or prac-
tical, users are often allowed to assign uncontrolled key-
words to a record, a process referred to as “Tagging”. This
allows concepts to be derived freely in the course of work,
as repeated and cross-contextual usage, often among multi-
ple users, leads to a naturally-arising set of useful, domain-
specific concepts [17–20].

Historical Record (MWO) Annotation Comparison

“Hydraulic Leak at cutoff unit;
Missing fitting replaced”

Categorization:
Subsystem 142 HYD SYSTEM
Error Code ERR 142A
Action Taken PART ORDERED

Tags:
objects cutoff unit, hydraulic, fitting
problems/actions leak, replace

This freedom implies that “tags” have not been directly
controlled—that is, picked from a fixed list known ahead of
time. They lack a designed model of individual tag rela-
tionships. Therefore the crucial step required to use tags for
structure mining is to determine relationship strength: math-
ematically modeling pairwise tag similarities (or conversely,
distances). As will be discussed in Section 2, methods for
approximating concept relationships in unstructured multi-
sets like tags vary widely, and have a variety of implications.

1.2 Evaluating Similarity Measures between Tags
Because so many down-stream structure mining and

analysis tools require some underlying assumption of what
makes concepts similar, it is important to consider the im-
pact of selecting a similarity model.

How does one evaluate whether a given similarity mea-
sure is “good” for a given problem? To unpack common
evaluation measures, assume we can represent our system
structure as a weighted graph G= {V,E}, where the node-set
V represents concepts in our system (assumed to be known,
one for each tag), and the edges E are weighted based on
similarity between these. Our modeling assumptions can in-
fluence two key properties of E that are crucial to a success-
fully recovered structure:

Precision & Recall: Detected relationships should be dis-
tinctly recognizable, and those detections should be reliably
useful. This implies graph sparsity, and ensures that indirect
similarity through an intermediary concept is not conflated
with true similarity. Any non-zero edge weight should there-
fore correspond to a real concept connection of some kind. In
other words, of the detected edges, most should be relevant,
and of relevant edges, most should be detected.

Robustness: Since structure is not known a priori, some
amount of filtering on edge weights will take place to enforce
the previous properties. The quality of a recovered structure
should be robust to changes in filter strictness. This implies
relevant edges should not be quickly lost as an increased
edge-weight thresholds remove unwanted detections.
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1.3 Research Questions
This paper investigates the performance of two com-

mon similarity measures with respect to these traits: co-
occurrence frequency-based (typified by cosine similarity),
and conditional sequence probabilities (typified by kth-order
Markov chains). We then show that, while each has strength
in one of the above desideratum, the other can be lacking.
This necessitates a hybridized approach to “interpolate” be-
tween the two measures. To accomplish this, we frame the
act of tagging historical records, typified by maintenance
work orders (MWOs), as a type of semantic memory recall
from within the expert’s internal “knowledge-graph”—this
leverages the concept of semantic fluency, which we define
in §3. Specifically, we investigate:

R1 Whether incorporating mechanisms for non-Markovian
jumps improve the precision and recall of structure re-
covery compared to frequency-based or Markovian rela-
tionship measures

R2 Whether the relationship-graph learned through this
model shows improved accuracy of learning tasks that
require an assumed similarity measure, compared to the
traditional measures.

We empirically test (1) precision and recall for learned
similarity measures from multiple synthetically generated
tag data-sets (using several known structures) via a memory-
recall model; and (2) semi-supervised concept classification
using tagged maintenance work orders from a mining ex-
cavator operation, not having a previously known concept-
relationship structure.

In both cases, we show that by building a probabilis-
tic model that accounts for (and subsequently learns) how
experts structure their implicit knowledge of a domain, one
can achieve significantly better performance (as measured by
precision and recall) than existing methods of relationship
recovery.

2 RELATED WORK
Using data to infer the underlying structure of a complex

system is a long-standing goal within domains that depend
upon accurate network recovery, such as: biological systems
and disease transmission vector modeling [21, 22]; uncover-
ing economic interactions and social networks [23,24]; infer-
ring physical models by learning governing equations [25];
or even description generation in computer vision, and quan-
tifying how humans reason about belonging and causality in
ambiguous images or contexts [12,13]. It is beyond the scope
of this work to exhaustively compare state-of-the-art in rep-
resentation learning1; still, a common theme found among
these techniques is an assumed definition for the “distance”
between observed data. For numerical data, a common as-
sumption is that distance between observations with N fea-
tures is an L-norm between the N-dimensional vectors (e.g.
Euclidean distance being the L2-norm), though often a more

1readers are directed to the literature review by Bengio et al. [16].

robust characterization of distances exists on a lower dimen-
sional manifold embedding within that space [26].

Learning useful structures from non-numerical data, like
tags or networks, is a rapidly progressing research area.
From a mechanism for extracting latent taxonomies from
tagged documents [27], to extracting interconnected term-
and topic-hierarchies through nested stochastic block mod-
els [28] or hyperbolic embeddings [29, 30]. Once again,
all of these tools assume an a priori estimate of what be-
ing “related” means: how similarity and distance are defined
in the latent feature space. Therefore, to make the best use
of these burgeoning tools, it is paramount to characterize the
impacts of one’s chosen similarity measure, and ensure that
the choice matches well with properties of the data and sub-
sequent models being used.

2.1 Global Frequency and Context
A common way to encode similarity between observa-

tions with discrete-valued features (whether tags, graphs, or
natural language documents) starts with making the intuitive
assumption that features occurring across similar contexts
are similar. This style of similarity measure naturally arises
when using frequency-based mathematical representations
of text via natural language processing (NLP). These include
“bag-of-words” weightings [31], topic models [32, 33], or
semantic vector embedding [34, 35]. In these vector rep-
resentations of an observation, then, the similarity between
two observations is less about how “close together” the co-
occurrence frequency magnitudes are, and more about occur-
rence frequency correlations —the vector direction similar-
ity. This is encoded in the cosine similarity measure, i.e. the
cosine of the angle between the vectors.

Rather than a corpus of documents, we are concerned
specifically with the set of tags assigned to records. This set
of tags, especially when created by multiple users, is com-
monly referred to as a folksonomy, a portmanteau of “folk”
and “taxonomy” [36]. Because folksonomies generally ask
users to determine minimal representative labels rather than
strict classifications (i.e., tags), each label can be seen in mul-
tiple contexts, much like words in text. The predominant way
to analyze tag similarity, then, is by their co-occurrences with
each other [37, 38]. If, over a set of C records, tag tk has bi-
nary vector uk = {1c(tk) : c ∈C}, then the cosine similarity
s between the binary occurrence vectors of the tags t1, t2 is
defined as:

s(t1, t2) =
u1 ·u2

‖u1‖‖u2‖
(1)

This measure is applied across many NLP and folskono-
metric methods to structuring relationships between tagged
concepts in useful ways, including the taxonomy extraction
and hyperbolic embedding work mentioned above [27, 30,
39]. For this work, while significant advances have been
made in contextual, set-based measures on e.g. topic models
or semantic embeddings, the latent relations being ‘learned”
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are quite often difficult to interpret for humans [40], stem-
ming from the so-called “black box” nature of these models.
We therefore make use of Equation 1 for ease of interpreta-
tion and broad acceptance.

The power of cosine similarity comes from its com-
putational simplicity, and an ability to deal with high-
dimensional feature sets (e.g.the set of all unique tags in
a folksonomy). These context-based similarity measures
(which also include Jaccard similarity, mutual information,
and the like), base their approach on treating tags as un-
ordered sets. This has the distinct advantage of picking
up on un-obvious relationships between tags that co-occur
in wildly varying contexts, quickly recovering global-scale
structures with minimal observations. We should expect that
most relevant relationships are quickly retrieved this way,
i.e. cosine similarity typically exhibits a high recall score
in structure recovery.

However, one can imagine adding a tag to a document
that is related to, say, the previously added tag, but not nec-
essarily to the first tag added; so when is co-occurrence a co-
incidence? This line of reasoning implies a separate model,
where annotating each tag implies a probability to use or not
use some subsequent tags.

2.2 Local Sequence Probability
On the opposite side of treating tags or text as an un-

ordered set, one might think of tagging as a sequential stream
of tag additions. Once again taking a cue from NLP, one
might assume that each subsequent concept written in text
is directly conditional on what was written previously. Pre-
dicting the probability of observing a word based on the pre-
vious, n locally-observed words (in order) is known as an
nth-order language model [41].

For tags, say assigning a tag to a document is equiv-
alent to being in that tag’s “state”, and the relations be-
tween states is the probability of transitioning between those
states. Assigning tags would then be a process satisfying the
Markov property; thus, for an nth-order tag Markov model,
the probability of observing any ith tag in a sequence is
P(ti|ti−1, · · · , ti−n). In practice, given a data-set of observed
tag sequences, this means finding the maximum likelihood
estimate for transition probabilities between tags, in the form
of conditional probability tables.

This is a powerful (though over-simplifying) model, and
many techniques seek to apply a similar reliance on the se-
quential nature of textual language or tagging to predict sub-
sequent relevant tags. Hidden Markov Models (HMMs), for
instance, treat each state as a distribution of tag “emmission”
probabilities, and train to find transitions between these dis-
tributions. These are often used both for tag recommenda-
tion, and for predicting other system feature relationships
with tags or keywords [42]. Other success has been found
using recurrent neural networks as language models, capable
of storing sophisticated, long-distance contextual informa-
tion while predicting a sequence [43].

Because the intuition behind the these sequence-based
models comes from nearby tags having a strong influence

on each other, one way to quickly estimate the relationship
strength of two tags is to estimate the probability of observ-
ing them in sequence:

s(t1, t2) = max [P(t1|t2),P(t2|t1)] (2)

This preserves symmetry in the similarity measure, allowing
us to compare it to the cosine similarity above. Since our
similarity is calculated from a sequence, and the model is
estimated only from observed sequences, we expect a high
fraction of total predicted relationships to be truly relevant,
i.e., precision score should be high.

Still, what if tag relationships exist that are rarely ob-
served directly, due to an third, highly common tag? What if
there are biases in tag ordering due to quirks of user report-
ing? Rather than having to choose between skewing toward
recall or precision, is there a model that more naturally fits
the mechanics of tagging, to avoid systematic failure to im-
prove either metric?

3 MODELING TAGS AS MEMORY RECALL
As discussed above, common techniques for discovering

structural relationships in tagged data primarily rely on ei-
ther frequency and co-occurrence information, or conditional
sequence probabilities of discrete objects/concepts. These
are powerful and easy-to-apply models used ubiquitously for
speech or the written word, but can also lead to systematic
misbehavior under the conditions that user taging presents.

Instead, this paper tries to address shortcomings in re-
lationship recovery by explicitly emulating the dynamics of
how humans might recall concepts from memory, and apply
this memory recall to estimating tag relationship structures.

This section first describes the concept of semantic flu-
ency tests—an existing tool in psychology literature for test-
ing concept-relationship recall—and how the surrounding
theory relates to tagging engineering records. We then de-
scribe a computational method to implement the concept of
semantic fluency using Initial-Visit Emitting Random Walks
(INVITE) [44]—a non-Markovian probabilistic model for
sampling semantic-fluency-type data from an underlying
concept-relationship network.

3.1 Semantic Fluency
When a user begins to tag a record, they try to search

their memory for concepts that are relevant to the record it-
self, in the context of the engineered system it pertains to. In
the interest of recovering latent relationships between system
components as understood by, e.g. a technician, we restrict
our discussion on tags to ones representing objects/items di-
rectly (though they may additionally concern problems that
were encountered with some items, or how other items were
used to solve these problems [20]).

The exact psychological mechanisms by which a person
searches through their memory is still an active area of re-
search and has been modeled in various ways. Some recent

4
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.
Approved for public release; distribution is unlimited.



studies [45] propose that concepts are recalled sequentially
by foraging in “semantic patches”—in brief, that humans se-
quentially recall concepts that are “near” each other in some
person-specific semantic space built through experience.

Specifically, these patches are thought of as existing in
a high-dimensional concept-space,2 and the likelihood that
some concept is recalled next is based on combining both
associative and categorical knowledge into a similarity mea-
sure between the current recalled concept and the next. By
thresholding this high-dimensional association “map”, bina-
rizing it as “is related”/“is not related”,we can represent this
map as a graph3, where concepts are nodes and an edge rep-
resents “is related”. Memory recall, then, consists of a sort
of “walk” along this graph.

A classic psychological experiment to measure what
such a graph might look like is the Semantic (or, Verbal) Flu-
ency test. Given an object type (e.g., animal):

1. Recall and record an object of that type;
2. Record the next object of this type you think of;
3. Continue recording for the remaining time

The reader is encouraged to try this process out for
themselves. One advantage of this test lies in not restrict-
ing (or having to specify a priori) the relationship between
objects required to record subsequent ones. For example:

dog→ cat→ lion→ tiger→ elephant→ wolf · · ·

As in this example, it is common for animal-based se-
mantic fluency lists to start with household pets, potentially
switching to unrelated categories like “large cats,” for further
exploration, before either retracing back to a previous cate-
gory (e.g., canines to “wolf” via “dog”) or onward via new
similarities (e.g., African animals to “elephant” via “lion”).

Altering the scope of such a task to “system object that
is relevant to a given record” instead of “object that is an an-
imal,” represents a task that is remarkably similar to how the
user tagging task was construed in previous sections. In this
model, each subsequent tag assigned to a record constitutes
a“jump” in the user’s internal “tag network”, which depends
in some way upon previous tag jumps for that record.

Thus, any attempt to recover the associative strength be-
tween concepts should necessarily incorporate these context
“jumps” (canines, big cats, household pets, African animals)
in a way that allows for “retracing your steps” to previous
concepts when exploring some new context. One model that
incorporates these precise features mathematically is the re-
cently proposed INVITE model [44].

3.2 Initial-Visit Emitting Random Walks
The described semantic fluency model for tagging boils

down to two key components of a user’s cognitive task when

2Though less applicable in technical or domain-specific corpuses where
examples are too few and far between, this is the intuition that leads
to the success of vector-based semantic embeddings like gloVe or
word2vec [34, 35].

3Also called an associative network [46].

recalling relevant tags:

- They submit tags sequentially, as they recall unique
defining concepts related to the record.

- They recall each concept by traversing relationship links
between it, and any recently recalled concepts.

Fig. 1 Illustrates such traversals by using a drive-train com-
ponent network from Walsh et al. to stand in for a user’s
latent understanding of a system’s structure. In that figure,
each “MWO” begins with a some initially sampled tag, with
subsequent tags potentially stemming from a “jump” to dis-
tant (non-adjacent) nodes in the network. This illustrates hid-
den jumps due to initial-visit censoring. The resulting tags
could still be reasonable for a MWO where those compo-
nents were involved: Example #1 could represent the text
“Had to replace bearing retainer; bearing balls showed ex-
cess wear. Inner and outer bearing races cleaned.” Despite
not being directly connected, they share a common region in
the graph, with each subsequent tag accessible in memory
from one of the previous tags.

This differs from a standard Bag of Words
model—where all tags are assumed to be linked through
co-occurrence on a record (i.e. only global graph topology
matters), and from nth-order Markov models—where tag re-
lations are limited to the nearest (or, previous) n entities (i.e.
only local sequences of observed tags matter). Additionally,
in neither of these models are tags explicitly modeled as
unique within the record.

This illustrates nicely the trade-off between categori-
cal and associative memory foraging that [45] discusses at
length, and is precisely the feature of tagging we investi-
gate when extracting a more realistic representation of tag
relationships through the mathematical framework of Initial-
Visit Emitting Random Walks.

Say the set of components or concepts that have a corre-
sponding tag in our system is denoted by the node-set N. A
user-given set of T 4 for a specific record can be denoted as
a Random Walk (RW) trajectory t = {t1, t2, t3, · · · tT}, where
T ≤ N. This limit on the size of T assumes tags are a set
of unique entries: any transitions between previously visited
tags in t will not be directly observed, making the transitions
observed in t strictly non-Markovian, and allowing for a po-
tentially infinite number of possible paths to arrive at the next
tag through previously visited ones.

Instead of directly computing over this intractable model
for generating t, the key insight from the original INVITE
paper [44] comes from partitioning t into T − 1 Markov
chains with absorbing states, where previously visited tags
are “transient” states, and unseen tags are “absorbing”. It
is then possible to calculate the absorption probability into
the kth transition (tk→ tk+1) using the fundamental matrix of
each partition. If the partitions at this jump consist of q tran-
sient states with transition matrix among themselves Q(k)

q×q,

4While some sources use “tagging” as a proxy for a set of strictly un-
ordered labels (as in multi-label classification), we preserve the mechanism
by which the tags were generated in the first place, i.e., in a specific order.
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Tagged MWOs

#1 ['bearing retainer', 'bearing balls', 'bearing
      inner race', 'bearing outer race']

#2 ['bearing inner race', 'driveshaft', 'clutch plate
      2', 'clutch disc']

#3 ['flywheel', 'crankshaft', 'cylinder 1', 'clutch
      plate 1']

#4 ['bearing retainer', 'bearing balls', 'bearing
      inner race', 'driveshaft']

cylinder 1

cylinder 2

cylinder 3
cylinder 4

crankshaft

flywheel

clutch plate 1

clutch plate 2

clutch disc

driveshaft

bearing outer race
bearing retainer

bearing balls
bearing inner race

bearing shield

gear 1
gear 2

gear 3

gear 4

drivetrain

Fig. 1: Exmaple observations of INVITE samples on a drive-train network model from Walsh et al [47].

and r absorbing states with transitions into them from q as
R(k)

q×r, the Markov transition matrix M(k)
n×n has the form

M(k) =

(
Q(k) R(k)

0 I

)
(3)

where 0, I represent lack of transition between/from absorb-
ing states. It follows from [48] that the probability P of a
chain starting at tk being absorbed into state k + 1, letting
N = (I−Q)−1, is given as

P(tk+1|t1:k,M) = N(k)R(k)
∣∣∣
q,1

(4)

The probability of being absorbed at k+ 1 conditioned
on jumps 1 : k is thus equivalent to the probability of ob-
serving the k+ 1 INVITE tag. If we approximate an a pri-
ori distribution of tag probabilities to initialize our chain as
t1 ∼ Cat(n,θ) (which could be empirically derived or simu-
lated), then the likelihood of our observed tag chain t, given
a transition matrix, is

L (t |θ ;M) = θ(t1)
T−1

∏
k=1

P(tk+1 | t1:k ; M) (5)

Finally, if we observe a folksonomy of tag lists C =
{t1, t2, · · · , tc}, and assume θ can be estimated independently
of M, then we can frame the problem of structure mining on

observed INVITE data as a minimization of negative log-
likelihood of our folksonomy given M:

M∗← argmin
M

C

∑
i=1

Ti−1

∑
k=1
− logL

(
t(i)k+1

∣∣∣t(i)1:k,M
)

(6)

3.3 Implementation
As formulated in Eq. 6, the optimization is constrained:

in addition to requiring row-stochasticity, the matrix N is
only guaranteed to exist if self-transitions are disallowed,
as proved in [44]. Similar to that implementation, we in-
troduce a softmax re-parameterization of M that allows the
optimization to be unconstrained in Rn×n, and guaranteeing
row-stochasticity.

Mi, j←
exp(Mi, j)[

∑ j exp(Mi)
]

j

We introduce a modification to this re-parameterization.
Eq. 6 implies that M represents a directed graph. Though
we model each tag as being generated conditional on pre-
ceding tags alone, we wish to preserve the intuition that rela-
tionships between tags are still assumed to be bi-directional,
while not strictly enforcing M to be symmetric (undirected)
while learning from samples, as in [49]. Put simply, one-
directional relationships can be useful to model when they
are largely the case (e.g., cat→lion), but we may not wish to
encourage one-directional relations that are quirks of imbal-
anced data and how people talk (gear 1↔ gear 2). To speed-
up recovery of what we assume is a “symmetry-dominant”
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M, we can bias the optimization toward symmetry via an up-
date to each entry prior to the softmax step:

Mi, j←max
{

Mi, j , M j,i
}

(7)

In folksonomies where the recovered weights in each direc-
tion are known to be meaningful, this can be skipped.

4 EXPERIMENTS
Per the above discussion, the following experiments and

case studies are done by comparing the recovered similarity
measures, in the form of tag-relationship graphs, between a
cosine similarity measure, 1st- and 2nd-order Markov chain
models, and the proposed INVITE-based similarity model.

To address R1 from §1.3, the first experiment demon-
strates the effectiveness of incorporating mechanisms from
the INVITE model when tag-style data is generated in the
manner of semantic fluency tests. We synthesize tagged
records as censored random walks on a sample of random
small-world networks, as well as on networks representing
real engineering systems, as described in [50].

We use these synthetic tags to (1) measure the network
recovery accuracy of the various similarity measure models
using standard information retrieval metrics, (2) determine
the ability of INVITE-based similarity to hybridize precision
and recall efficiency of the other models, and (3) Illustrate
qualitatively the key failure modes of various modeling as-
sumptions when INVITE mechanics are not taken into ac-
count.

In the second experiment, addressing R2, we determine
the performance of the similarity measures as pre-processing
steps to accomplishing a semi-supervised tag classification
task. We utilize a folksonomy of real, tagged excavator
MWOs, for which a “true” underlying system structure is
not known a priori. Classification scores and divergence
from true multinomial tag classification distributions are pre-
sented.

For all experiments, we address the way in which differ-
ent models perform under similarity thresholding. Thresh-
olding is important since, as is universally the case in rep-
resentation learning, we do not generally have a “ground-
truth” representation to tune parameters against. As de-
scribed briefly in §1.2, it is the performance characteristics
over a range of thresholds that we seek to improve. After
normalizing the relationship strength of any given edge into
the range M∗i, j ∈ [0,1], we threshold M such that, for a given
threshold value σ ∈ [0,1], the entries of a thresholded simi-
larity matrix Mσ are given by:

Mσ
i, j =

{
1, if M∗i, j ≥ σ

0, otherwise

These networks should be sparse, to be informative
about the existence of important relationships while ignor-
ing noisy ones. This implies class-imbalance between edges

and non-edges as target predictions. For imbalanced learn-
ing problems like this, precision (P, the ratio of true-positive
edges to total detected edges) and recall (R, the ratio of true-
positive edges to total true edges) at each threshold can eluci-
date model robustness under varying threshold sensitivities 5

[51]. Combining both into a single metric for balancing these
two desirable traits is primarily done using an Fβ-measure:

Fβ = (1+β
2)

PR
β2P+R

(8)

In this paper, we use the most common case of β = 1 to
equally balance the importance of precision and recall.

Because of the alterations described in §3.3, the analytic
gradient for the INVITE loss function described in [44] no
longer applies; instead, we make use of automatic differen-
tiation as a means to ensure accurate gradient calculations
under these modifications. The package PyTorch [52] was
used for for optimization with automatic differentiation, in
the Python programming language. For calculating maxi-
mum likelihood estimates for the Markov-chain models, we
have made use of the Python package pomegranate [53].
Code will be made available in an associated repository for
reproduceability6.

4.1 Exp. 1: Recovering Known Networks
To validate the ability of our method to accurately recon-

struct engineering networks compared to other methods, we
first synthesize censored tag lists from true tag-relationship
networks under a variety of conditions.

Randomized Graphs Random graphs were generated,
consisting of Watts-Strogatz randomized connections be-
tween N ∈ {10,25,30} nodes. For the purposes of compar-
ison across networks, the mean degree was set as KWS =
4 with the re-wiring coefficient set to βWS = 0.166 [54]
7. Then, synthetic folksonomies were generated consist-
ing of ‖C‖ ∈ {10,25,30} “tagged documents” (i.e.censored
random-walks on a given graph). In this experiment, each
document/random-walk was assigned ‖T‖= 4 tags. The me-
dian F1-score across the for 10 different graphs are shown for
each N/C combination in Figure 2. The precision and recall
curves are also shown, collapsed over all 90 random graphs.

Discussion As measured by F1-score, the INVITE-based
similarity measure consistently out-performs both the
Markov chain and cosine similarity measures across a wide
range of thresholds, for all graph/random walk settings.
More interesting, and more useful for practitioners in an un-
supervised setting, is the shape of these curves, and how

5Recall is alternatively known as sensitivity, while precision is alterna-
tively known as Positive Predictive Value (PPV).

6https://github.com/tbsexton/organizing-tags
7This Watts-Strogatz setting, while not necessary for the purposes of our

experiment, can give networks with experimentally similar properties to real
cognitive associative networks; see [49].

7
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Fig. 2: Top: F1-scores for various combinations of network size N and number of “tagged records”/random-walks C, shown
as a function of similarity threshold σ. Median over 10 trials for each setting, shown with 95% confidence interval (1000
bootstrap samples). Bottom: Precision and recall across all 90 trials, for all 9 setting combinations.

they change. For low-complexity networks, cosine similar-
ity is relatively stable over all thresholds. Then, as complex-
ity increases, much more filtering has to take place (higher
σ) before it reaches best performance. This is contrary to
the sequence-based Markov chains, which show dramatically
better performance at thresholds barely above 0, but suffer-
ing at higher specificity.

Meanwhile, the INVITE-aware similarity shows a sharp
increase at low-σ, like the markov-model, while retaining the
smoothness of the cosine model as σ is tuned higher. This
tendency to capture the strengths of each is more clear if
precision and recall are shown separately, as in the bottom
of Figure 2, where the precision behavior of the INVITE
model matches that of the Markov similarity (it’s presumed

strength; recall §1.2). At the same time, it’s recall behavior
more closely resembles that of the cosine similarity model
(again, the strong-suit of that paradigm).

This dynamic—the trade-off between models that favor
recall vs. precision, can be made clearer with a concrete ex-
ample.

Real System Networks To qualitatively understand the
underlying failure/success modes of each measure, we turn
to the real system networks presented in [47, 50]. We start
with their drivetrain model (N = 18), which is simple enough
for visualization while demonstrating common patterns in
engineered systems. We sample C = 20 random walks of
length l = 4, some of which were used above in Figure 1.
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Fig. 3: F1-optimal thresholded networks, with un-threshholded adjacency-matrix representations of M∗.

These settings were chosen intentionally as low-performing,
to illustrate failure modes in each model type in Figure 3,
where optimal F1-thresholded networks are shown with false
positive (green) and false negative (red) edge predictions,
along with the un-thresholded similarity matrix M∗.

The cosine similarity model has quickly detected all rel-
evant edges, as seen in the un-thresholded matrix, but it has
also over-estimated the connectivity of local communities.
Engineered systems often display hierarchical connectivity
patterns, where many low-level parts are only similar indi-
rectly because of their connection to a key higher-level com-
ponent (e.g.all cylinders and the flywheel to the crankshaft,
or all gears and bearing inner race to the driveshaft). Because
the observed transitions are censored from seeing previously
visited nodes—just like a user only tags each concept once,
even while they continue to use it to recall other concepts
—the cosine model sacrifices higher-component connections
to preserve the perceived frequency with which low-level
tags co-occur.

The Markov models, on the other hand, demonstrate re-
markably few false-positives. Instead, accuracy is limited by
the number of available observations for each sequence of

two or three tags. Since the number of possible paths is so
large, true relationships might only be realized as a direct
sequence a single time, or not at all, when so little data is
available. This means true edges are quickly lost when the
model’s certainty about their existence is no better than false
edges detected in a censored INVITE jump. The INVITE
model balances aspects from both models, by quickly gain-
ing certainty about the overall structure, while still allow-
ing for exploration to re-route potential connections through
edges that make more sense sequentially.

For the interested reader, the same exercise was per-
formed on a reduced version of the Airplane network, also
from [47, 50]. Due to complexity of the visualization,
nodes with identical names (barring a numerical identifier)
were merged into a single concept-tag. Figures 6 and 7 in
the supplementary materials show F1-scores, precision-recall
curves, and Average Precision scores (APS), while Figure 8
replicates Figure 3 for this more complex network. Readers
will note that once again, certain desirable behaviors of the
Cosine model are exhibited by INVITE (e.g., a smooth rise
in F1 over a wide range of middling thresholds, with maxi-
mum at a mid-to-high value), along with desirable traits of
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the Markov model (e.g. significant F1 at near-zero thresh-
olds).

4.2 Exp. 2: Real-World Excavator MWOs
Unlike the previous synthetic experiments, one does not

in general have access to a ground-truth network that val-
idates any chosen similarity measure. Not having labeled
data or targets to supervise the learning process is one of the
key difficulties in representation learning [16]. To assess the
applicability of the INVITE-based similarity measure to real-
world scenarios, we apply our model to tags annotated for a
mining dataset pertaining to 8 similarly-sized excavators at
various sites across Australia [7, 55].

The tags were created by a subject-matter expert
spending 1 hour of time in the annotation assistance tool
nestor [56], using a methodology outlined in a previous
benchmarking study for that annotation method [9].

That work compared the ability of tags to estimate sur-
vival curves and mean time-to-failure, when compared with a
custom-designed keyword extraction tool based on classify-
ing the maintenance issues by subsystem. While certain sets
of tags were able to predict time-to-failure with high accu-
racy for certain subsystems, a key problem identified in that
work is in knowing beforehand “which tags best represent a
given subsystem?”

Some tags are sufficient-but-unnecessary conditions to
represent a subsystem —e.g.the “hydraulic” tag indicates a
Hydraulic System MWO, but so might a “valve”, s.t. hy-
draulic is implied but not present. Consequently, we can
treat the problem of assigning tags to a subsystem as a semi-
supervised multi-class classification problem: given a few
known tag→subsystem assignments, and a similarity value
between all pairs of tags, classify each un-assigned tag as
belonging to a subsystem.

To test the ability of the similarity measures to accom-
plish this, the top three most common subsystems in the data
were used as classes, namely, Hydraulic System, Engine, and
Bucket. The tags “hydraulic”, “engine”, and “bucket” were
assigned to those subsystems as known labels, respectively.
Tags were filtered to only include ones of high-importance
and sufficient information: only work orders containing at
least 3 unique tags, and only tags that occurred at least 10
unique times within the those work orders, were included
for this analysis (C = 263 MWOs, N = 40 tags). Then the
number of occurrences for every tag can be compared across
subsystems, giving each tag a ground-truth multinomial (cat-
egorical) probability distribution for occurring within each
subsystem, as shown in Figure 4. We determine ground-truth
classification labels as subsystems that account for≥ 60% of
each tag’s occurrences. Tags more balanced than that are
considered “unknown subsystem”.

Implementation We proceed in a similar way as before in
training the similarity measures for each tag. Note that the
tagging annotation process used by [56] assigns tags when
they are recognized in raw text through one of many alias’.
Therefore, the ordering of tags for these MWOs is strictly

based on the order in which English is written—this makes
the order any pair’s occurrence quite meaningful. As dis-
cussed in §3.3, we skip the symmetrization step of Equation 7
until after training is complete.

To perform semi-supervised classification on the recov-
ered relationship graphs, we use a label-spreading algorithm
described in [57], which itself was inspired by spreading ac-
tivation networks in experimental psychology [58, 59]. The
result of this algorithm is tags having a score for each class,
with the classification being the maximally scored class for
that tag. These class assignments can then be compared to
the ground-truth labels, which we have done by weighted
macro-averaging of the F1-score (see the top of Figure 5).

Discussion The classification of the INVITE-based simi-
larity measure far outperforms the other measures as a pre-
processor for label-spreading, when measured by average
F1-score. However, since these “classifications” are actu-
ally thresholded multinomial distributions (with some tags
regularly occurring across multiple subsystems), how do we
know if an underlying structure has actually been recovered,
rather than simply a black-box classifier that happens to per-
form well at this setting?

To begin answering this question, we might ask whether
the relative scores returned by label-spreading are similar to
the original multinomial distributions themselves, rather than
the overall classification. To find out, we use softmax nor-
malization 8 to transform each tag’s scores into a “predicted
multinomial”, before finally calculating the Kullback-Leibler
divergence (KLD) between the true and predicted multino-
mials for every tag. The total KLD, summed over all tags,
is also shown in Figure 5, along with positions of each tag’s
multinomial as projected onto the 2-simplex for the true and
F1-optimal predicted distributions. Once again, the INVITE
performs much better at this task, over a wide range of σ

(lower is better).
A reason for the performance disparity can be seen in

the simplex projections: recovered topology via INVITE-
similarity does a much better job of separating the three
classes, while not letting any single tag overcompensate by
dominating a subsystem’s area. even the “unknown” tags are
correctly placed roughly between Bucket and Hydraulic Sys-
tem regions, reflecting the true topology of the system. In-
terested readers are encouraged to find the best-performing
recovered networks visualized in Figure 9, further demon-
strating how the properties of each similarity measure behave
radically differently.

One other point of note is the number of tags-per-MWO:
these results were calculated using MWOs with at least three
tags each, but the vast majority of documents in this dataset
had fewer than this. The same similarity measures were cal-
culated using more data (having at least 2 tags each), and per-
formance decreased across the board. INVITE-based simi-
larity still performed best, with Cosine similarity now closer

8For visualization, a temperature parameter was added to softmax, and
this was optimized for minimum KLD via Brent’s method [60] for each sim-
ilarity measure independently to provide an equal footing for comparison.
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to it. This decrease indicates a base level of noise in com-
mon, catch-all tags that actually reduces the amount we learn
about structure from data. In a sense, quality may beat quan-
tity for some types of representation learning. Interested
readers can find all additional results in Figure 9.

5 Conclusions and Future Work
This paper presented a method to recover a structured

representation of engineering knowledge from unstructured
written documents (specifically, Manufacturing Work Or-
ders), based on initial-visit emitting random walks (IN-
VITE). Compared to previous methods, our technique pre-
serves local connectivity structures, even in locally hierar-
chical communities. This can lead to better pre-processing
for down-stream structure mining and representation learn-
ing tasks, as well as for analytics or predictions that better
map to expert users’ intuitions about how concepts within a
system are organized. Both of these have the opportunity to
increase trust in data-driven decision support systems, which
are increasingly adopted and used without necessarily con-
sidering how humans will interact with them [61].

Plenty of work remains to be done to achieve these
goals. While the INVITE-based similarity measure per-
formed quite will in our tests, there are still discrepancies be-
tween the model it adheres to, and what one might observe
in a real folksonomy. For instance, if a “hydraulics” tag is
considered too general or abstract for a team that concerns
itself largely with hydraulic work, this tag may be skipped as
being implied through context. INVITE requires tags to be
observed at least once in a record to be reached, but a bet-
ter method might account for hidden paths or extra, unseen
nodes that greatly improve the model’s likelihood, much like
a form of the “Steiner-tree” problem [62].

Additionally, such a similarity measure could be used
for knowledge-structuring-assistance more generallye.g.in
an active learning context. Such a tool could additionally
benefit from a recent explosion in interest for preserving hier-
archical and knowledge-graph relationships in vector space,
e.g., via Poincaré and “Box-lattice” embeddings [63, 64].
Care must be taken to allow flexible annotation of differ-
ent kinds of relationship strengths,9, while INVITE assumes
a single, generic “similarity”. Such a system should allow
for multiple (potentially disagreeing) annotators, occasion-
ally suggesting detected relationship types for review to be-
come accepted as ground-truth. We envision a type of “topic
model” over the space of knowledge graphs [65], or relation-
ship graphs a combination of independent “graph compo-
nents” that maximally explain the distribution of edge types
in a community [66].

Overall, the model we describe here can enable ex-
perts and novices alike to benefit from tacit expertise con-
tained within frequently-unused mountains of tagged tech-
nical records, by quickly prototyping quantitative represen-
tations of this knowledge as concept-relationship graphs for

9e.g., Walsh et al.actually construct three types of structured system rep-
resentations in their paper: functional, parametric, and component (which
we use here)

downstream usage in analysis pipelines. We believe that by
explicitly incorporating cognitive theories into our modeling
assumptions about how users might represent and then recall
their knowledge while tagging, we can accelerate the train-
ing and use of unsupervised data-driven expert systems in
engineering design.
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A Supplementary Material: Airplane (Walsh et al.)

0.00 0.25 0.50 0.75 1.00
Threshold

0.00

0.25

0.50

0.75

F 1
-s

co
re

0.00 0.25 0.50 0.75 1.00
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

F1=0.2

F1=0.4

F1=0.6

F1=0.8

* = 0.54

* = 0.7
* = 0.071

* = 0

INVITE
APS = 0.89
Cosine
APS = 0.67

MC1
APS = 0.78
MC2
APS = 0.71

Fig. 6: F1-scores and precision-recall curves for the airplane
network, using C = 100 random walks. Precision/Recall is
reported alongside Average Precision Score for the whole
threshold range, and the threshold value for which F1-score
was optimal
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Fig. 7: Repeating Figure 6 using C = 200 random walks.
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B Supplementary Material: Excavators

adapter
belt

bolt

boom

box

brake

bucket

cap

cylinder

drain

engine

exhaust

fan

fitting

hose

hr

hydraulic

line

lip

manifold

motor

mount

outer

pin

plate

pump
radiator

retainer roller

shroudslew

starter

steel

tooth

track

tube

valve

walk

warranty wing

INVITE

adapter

belt

bolt

boom

box

brake

bucket

cap

cylinder

drain

engine

exhaust

fan

fitting

hose

hr

hydraulic
line

lip

manifold

motor

mount

outer

pin

plate

pump
radiator

retainer

roller

shroud

slew

starter

steel

tooth

track

tube
valve

walk

warranty

wing

Cosine

adapter

belt

bolt

boom

box

brake
bucket
cap

cylinder

drain
engineexhaust

fan

fitting

hose

hr

hydraulic

line

lip

manifold

motor

mount

outer

pin

plate

pump

radiator

retainer

roller

shroud

slew

starter

steel

tooth

track

tube

valve

walkwarranty

wing

MC1

adapter

belt

bolt
boom

box

brake

bucketcap

cylinder

drain

engine
exhaust

fan

fitting

hosehr

hydraulic

line

lip

manifold
motor

mount

outer

pin
plate

pump

radiator

retainer

roller shroud

slew

starter
steel

tooth

track tube

valve
walkwarranty

wing

MC2

Fig. 9: F1-optimal tag structures recovered from excavator MWOs having at least 3 tags (C = 263). Maximum spanning tree
appearing in blue, with other edges appearing in green. Note the two markov-chain models isolated certain tags to achieve
better performance—an sign that the learned topology was less relevant.

17
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.
Approved for public release; distribution is unlimited.



0
1

Hydraulic System

0
1

Bucket
ac

cu
m

ul
at

or
ad

ap
te

r
ai

r
be

lt
bo

lt
bo

om bo
x

br
ak

e
bu

ck
et

bu
ild ca

p
cl

am
p

co
ol

an
t

cy
lin

de
r

dr
ai

n
en

gi
ne

ex
ha

us
t

fa
n

fit
tin

g
ge

ar
bo

x
ha

nd
ra

il
ho

se
hy

dr
au

lic
id

le
r

lig
ht

lin
e lip

m
ot

or
m

ou
nt

ou
te

r
pi

n
pl

at
e

pu
m

p
ra

di
at

or
ro

lle
r

se
ns

or
sh

ro
ud

sl
ew

st
ai

r
st

ar
te

r
st

ee
l

st
ep

sw
itc

h
ta

nk tip
to

ot
h

tr
ac

k
va

lv
e

w
ar

ra
nt

y
w

el
d

0
1

Engine

0.00 0.25 0.50 0.75 1.00
Threshold

0.2

0.4

0.6

F 1
-s

co
re

0.00 0.25 0.50 0.75 1.00
Threshold

20

25

30

To
ta

l K
L-

D
iv

.
INVITE
Cosine
MC1
MC2

0.0

0.2

0.4

0.6

0.8

1.0

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

True

(KLD)
  =19.3

INVITE

(KLD)
  =20.7

Cosine

(KLD)
  =26.8

MC1

(KLD)
  =26.3

MC2

Hydraulic System
Bucket
Engine
Not Classified

Fig. 10: Results for the excavator data where any MWO having at least 2 tags was allowed. The increase in MWO from 263
to 1712 is indicative of the sparsity in this data, and how varied the tags can be. Additionally, the decrease in performance
indicates how important increased expert elicitation at the individual MWO-level can be toward extracting useful knowledge
with representation learning.
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Fig. 11: F1-optimal tag structures recovered from excavator MWOs having at least 2 tags (C = 1712). Networks are ploted
with highlighted maximum spanning tree appearing in blue, with other edges appearing in green. While performance was
lower across the board (even with far more training data), clear communities around the three subsystems can be clearly
seen for both INVITE and Cosine models, and the sparsity for Cosine is much improved, with more data to filter spurrious
connections against.
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